Monday, 2 May 2016

Iron pillar of Delhi

The Iron Pillar located in Delhi, India, is a 7 m (23 ft) column in the Qutb complex, notable for the rust-resistant composition of the metals used in its construction.
The pillar has attracted the attention of archaeologists and materials scientists and has been called "a testament to the skill of ancient Indian blacksmiths" because of its high resistance to corrosion. The corrosion resistance results from an even layer of crystalline iron hydrogen phosphate hydrate forming on the high phosphorus content iron, which serves to protect it from the effects of the local Delhi climate.

The pillar weighs over 6,000 kg, and is thought to have originally been erected in what is now Udayagiri by one of the Gupta monarchs in approximately 402 CE, though the precise date and location are a matter of dispute. It was transported to its current location in 1233 CE.

Description
The Iron pillar stands within the courtyard of Quwwat-ul-Islam Mosque

Original location
The first location of the pillar has been debated. While the pillar was certainly used as a trophy in building the Quwwat-ul-Islam mosque and the Qutb complex, its original location, whether on the site itself or from elsewhere, has been discussed frequently. A summary of views on this subject and related matters was collected in volume edited by M. C. Joshi and published in 1989. More recently, opinions have been summarised again by Upinder Singh in her book Delhi: Ancient History.
R. Balasubramaniam explored the metallurgy of the pillar and the iconography based on analysis of archer-type Gupta gold coins. In his view, the pillar, with a wheel or discus at the top, was originally located at the Udayagiri caves, situated near Vidisha in Madhya Pradesh. This conclusion was partly based on the fact that the inscription mentions Viṣṇupadagiri (meaning "hill with footprint of Viṣṇu"). This conclusion was endorsed and elaborated by Michael Willis in his Archaeology of Hindu Ritual, published in 2009. The key point in favour of placing the iron pillar at Udayagiri is that this site was closely associated with Chandragupta and the worship of Viṣṇu in the Gupta period. In addition, there are well-established traditions of mining and working iron in central India, documented particularly by the iron pillar at Dhar and local place names like Lohapura and Lohangī Pīr. The king of Delhi, Iltutmish, is known to have attacked and sacked Vidisha in the thirteenth century and this would have given him an opportunity to remove the pillar as a trophy to Delhi, just as the Tughluq rulers brought Asokan pillars to Delhi in the 1300s.

Inscriptions
The pillar carries a number of inscriptions and graffiti of different dates which have not been studied systematically despite the pillar's prominent location and easy access. The oldest inscription on the pillar is in Sanskrit, written in Gupta-period Brahmi script. This states that the pillar was erected as a standard in honour of Viṣṇu. It also praises the valor and qualities of a king referred to simply as Candra, now generally identified with the Gupta King Chandragupta II. Some authors attempted to identify Candra with Chandragupta Maurya and yet others have claimed the pillar dates as early as 912 BCE. These views are no longer accepted.
The inscription has been revisited by Michael Willis in his book Archaeology of Hindu Ritual, his special concern being the nature of the king's spiritual identity after death. His reading and translation is as follows:
One of the later inscriptions, dated to 1052 CE, mentions Tomara king Anangpal II. This has suggested by some, without any substantial basis, that the pillar was installed in its current location by Vigraha Rāja, the ruling Tomar king.

Scientific analysis
The pillar was manufactured by the forge welding of pieces of wrought iron. In a report published in the journal Current Science, R. Balasubramaniam of the IIT Kanpur explains how the pillar's resistance to corrosion is due to a passive protective film at the iron-rust interface. The presence of second-phase particles (slag and unreduced iron oxides) in the microstructure of the iron, that of high amounts of phosphorus in the metal, and the alternate wetting and drying existing under atmospheric conditions are the three main factors in the three-stage formation of that protective passive film.
Lepidocrocite and goethite are the first amorphous iron oxyhydroxides that appear upon oxidation of iron. High corrosion rates are initially observed. Then, an essential chemical reaction intervenes: slag and unreduced iron oxides (second phase particles) in the iron microstructure alter the polarization characteristics and enrich the metal–scale interface with phosphorus, thus indirectly promoting passivation of the iron (cessation of rusting activity). The second-phase particles act as a cathode, and the metal itself serves as anode, for a mini-galvanic corrosion reaction during environment exposure. Part of the initial iron oxyhydroxides is also transformed into magnetite, which somewhat slows down the process of corrosion. The ongoing reduction of lepidocrocite and the diffusion of oxygen and complementary corrosion through the cracks and pores in the rust still contribute to the corrosion mechanism from atmospheric conditions.
The next main agent to intervene in protection from oxidation is phosphorus, enhanced at the metal–scale interface by the same chemical interaction previously described between the slags and the metal. The ancient Indian smiths did not add lime to their furnaces. The use of limestone as in modern blast furnaces yields pig iron that is later converted into steel; in the process, most phosphorus is carried away by the slag. The absence of lime in the slag and the use of specific quantities of wood with high phosphorus content (for example, Cassia auriculata) during the smelting induces a higher phosphorus content (> 0.1%, average 0.25%) than in modern iron produced in blast furnaces (usually less than 0.05%). One analysis gives 0.10% in the slags for 0.18% in the iron itself. This high phosphorus content and particular repartition are essential catalysts in the formation of a passive protective film of misawite (d-FeOOH), an amorphous iron oxyhydroxide that forms a barrier by adhering next to the interface between metal and rust. Misawite, the initial corrosion-resistance agent, was thus named because of the pioneering studies of Misawa and co-workers on the effects of phosphorus and copper and those of alternating atmospheric conditions in rust formation.

The most critical corrosion-resistance agent is iron hydrogen phosphate hydrate (FePO4-H3PO4-4H2O) under its crystalline form and building up as a thin layer next to the interface between metal and rust. Rust initially contains iron oxide/oxyhydroxides in their amorphous forms. Due to the initial corrosion of metal, there is more phosphorus at the metal–scale interface than in the bulk of the metal. Alternate environmental wetting and drying cycles provide the moisture for phosphoric-acid formation. Over time, the amorphous phosphate is precipitated into its crystalline form (the latter being therefore an indicator of old age, as this precipitation is a rather slow happening). The crystalline phosphate eventually forms a continuous layer next to the metal, which results in an excellent corrosion resistance layer. In 1,600 years, the film has grown just one-twentieth of a millimetre thick.
Balasubramaniam states that the pillar is "a living testimony to the skill of metallurgists of ancient India". An interview with Balasubramaniam and his work can be seen in the 2005 article by Veazy. Further research published in 2009 showed that corrosion has developed evenly over the surface of the pillar.

Evidence of cannonball strike
A significant indentation on the middle section of the pillar, approximately 400 cm (156 in) from the current courtyard ground level, has been shown to be the result of a cannonball fired at close range. The impact caused horizontal fissuring of the column in the area diametrically opposite to the indentation site, but the column itself remained intact. While no contemporaneous records, inscriptions, or documents describing the event are known to exist, historians generally agree that Nadir Shah is likely to have ordered the pillar's destruction during his invasion of Delhi in 1739 CE, as he would have considered a Hindu temple monument undesirable within an Islamic mosque complex. Alternatively, he may have sought to dislodge the decorative top portion of the pillar in search of hidden precious stones or other items of value.

No additional damage attributable to cannon fire has been found on the pillar, suggesting that no further shots were taken. Historians have speculated that ricocheting fragments of the cannonball may have damaged the nearby Quwwat-ul-Islam mosque — which is known to have suffered damage to its southwestern portion during the same period — and the assault on the pillar might have been abandoned as a result.
Qila Rai Pithora

Although Delhi had been a thriving city for several centuries, the first city' of the dating to 11th century gets its recognition due to the availability of recorded historical facts. Qila Rai Pithora also known as Rai Pithora's Fort was a fort city built in 12th-century by Chauhan king, Prithviraj Chauhan. Chauhan Rajputs had taken over the city of Delhi, from Tomar Rajputs. It also incorporated, much older Lal Kot built earlier by 8th-century Tomar Rajput ruler, Anang Pal I. Qila is a Persian word meaning a fort or castle. It was from the fort that the Tomar, Chauhan and the Slave Dynasty ruled over Delhi from 12th to 13th century.

Remains of the fort walls are scattered across South Delhi, visible in present Saket, Mehrauli around Qutb complex, Kishangarh and Vasant Kunj areas.

History

In 1160 AD, the Chauhan rulers took over Delhi from Tomars, along with it the fort city of Lal Kot, the first extant city of Delhi. Thereafter Prithviraj Chauhan whose capital was Ajmer in Rajasthan, enlarged the Lal Kot, which had large rubble walls and ramparts, and renamed it Qila (Fort) of Rai Pithora or Qila Rai Pithora. The combined fort extended to six and a half km, and city existed with the fort, while older Lal Kot served as the citadel. However, the Chauhan's didn't rule long over the city, in 1190s the Afghans started attacking. Though Chauhans defeated Muhammad Ghori in the First Battle of Tarain in 1191, a year later in 1192, his general Qutubuddin Aibak defeated Prithviraj Chauhan in the Second Battle of Tarain, ending their dynasty. This in turn established Muslim rule in India, with his Mamluk dynasty also known as Slave dynasty, the first Sultanate of Delhi. However, Aibak didn't extend or change the fort structure, it remained same through his early successors as well.